Author Affiliations
Abstract
1 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
Frequency modulation (FM)-to-amplitude modulation (AM) conversion is an important factor that affects the time–power curve of inertial confinement fusion (ICF) high-power laser facilities. This conversion can impact uniform compression and increase the risk of damage to optics. However, the dispersive grating used in the smoothing by spectral dispersion technology will introduce a temporal delay and can spatially smooth the target. The combined effect of the dispersive grating and the focusing lens is equivalent to a Gaussian low-pass filter, which is equivalent to 8 GHz bandwidth and can reduce the intensity modulation on the target to below 5% with 0.3 nm @ 3 GHz + 20 GHz spectrum phase modulation. The results play an important role in the testing and evaluating of the FM-to-AM on the final optics and the target, which is beneficial for comprehensively evaluating the load capacity of the facility and isentropic compression experiment for ICF.
dispersion grating frequency modulation-to-amplitude modulation conversion high-power laser facility inertial confinement fusion phase modulation 
High Power Laser Science and Engineering
2024, 12(1): 010000e9
作者单位
摘要
1 中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
2 中国科学院大学, 北京 100049
高功率激光驱动器中多采用谱色散匀滑(SSD)的束匀滑技术,而SSD中的相位调制常使用等幅相位调制。为进一步改善匀滑效果,提高动态调控能力,提出一种特异性相位调制技术,即采用调制深度为时变函数的特异性调制方式来获得光谱宽度可随时间变化的信号输出。基于相位调制的频谱理论,分析了特异性相位调制后的激光频谱特性。利用任意波形发生器(AWG)整形输出的特定相位调制信号开展实验研究,通过改变AWG输出两路电信号的相对时间差,得到250 ps的信号光在3 ns内不同时间点的调制光谱,实验结果与理论模拟结果一致。这种调制方式可以完成光谱宽度的连续实时调控,这对于高功率激光驱动器的激光参数控制中实现动态的光谱色散匀滑有着重要应用。
激光光学 相位调制 光谱宽度 光谱色散匀滑 惯性约束核聚变 
中国激光
2021, 48(20): 2005003
Author Affiliations
Abstract
1 National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
Based on the pulse-shaping unit in the front end of high-power laser facilities, we propose a new hybrid scheme in a closed-loop control system including wavelet threshold denoising for pretreatment and a first derivative adaptive smoothing filter for smooth pulse recovery, so as to effectively restrain the influence of electrical noise and FM-to-AM modulation in the time–power curve, and enhance the calibration accuracy of the pulse shape in the feedback control system. The related simulation and experiment results show that the proposed scheme can obtain a better shaping effect on the high-contrast temporal shape in comparison with the cumulative average algorithm and orthogonal matching pursuit algorithm combined with a traditional smoothing filter. The implementation of the hybrid scheme mechanism increased the signal-to-noise ratio of the laser pulse from about 11 dB to 30 dB, and the filtered pulse is smooth without modulation, with smoothness of about 98.8%.
first derivative adaptive smoothing filter recovery of smooth pulse signal-to-noise ratio wavelet threshold denoising 
High Power Laser Science and Engineering
2021, 9(2): 02000e15
作者单位
摘要
1 中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
2 中国科学院大学材料与光电研究中心, 北京 100049
采用光强度调制鉴相方案,使用直接数字频率合成器(DDS)和激光驱动器产生频率稳定的调制激光,注入待测光路,在待测光路后进行光电转换和放大,引入参考本振信号作为混频器相位参考信号,利用混频器测量待测光路信号与参考本振信号的相位差,获得光路延时信息。主要特点如下:提出了在本振信号链路三段移相的差分式检测方法,优化了鉴相点,提高了测量精度;采用单段短时两相位点测量模式,有效降低了光源功率波动、光路中光强波动、光电探测及放大电路增益波动、温度变化导致相位差漂移等带来的测量误差;在每个相位点多次测量采样,根据测量的平均值计算相位差,推导时间差。详细分析了测量电压和被测时延之间的函数关系,分析了影响测量精度的因素,构建验证系统,完成了实验验证。实验结果表明:本方案在4 ns的时延内的测量精度可达1 ps,大幅提升了现有高功率激光装置的同步测量精度。
测量 混频器 光电检测 时延 
中国激光
2020, 47(10): 1004002
作者单位
摘要
1 上海大学通信与信息工程学院特种光纤与光接入网重点实验室, 上海 200444
2 中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
在使用高功率激光装置进行物理实验时,高精度时间同步的时标系统是实现物理过程精确诊断的必要条件。为了满足物理实验需求,该系统采用任意波形发生器输出信号时分复用结合高速电光调制的技术方案,同源产生了主激光、时标光、电时标和高精度触发信号等多路信号。时标系统共可输出532,355,266 nm三种波长共10路梳状时标光信号及8路梳状电时标信号、两路快前沿高幅值触发信号。时标信号与主激光时间同步抖动峰峰值达到12.80 ps,梳状时标光信号脉冲周期峰值抖动为6.40 ps,接近目前采用的测量系统极限。完成了时标系统在高功率激光装置中的应用演示,满足了诊断设备应用要求;对条纹相机不同扫程进行时间基准标定实验,可有效校准相机大扫程的时间误差。
激光光学 时标系统 高精度时间同步 任意波形发生器 条纹相机 
中国激光
2019, 46(11): 1101011
Author Affiliations
Abstract
National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
A high power laser system was used to drive the ignition of inertial confinement fusion (ICF), of which the high energy, the uniform focal spot, the accurate laser waveform, and the synchronization between the laser beams are key parameters. To accomplish this, global laser characteristics control should be assured, which was the main purpose of the injection laser system. In this paper, the key technological progress involved in the improvement of the performance of the injection laser of SG-II is reported, including frequency domain control, time domain control, near-field spatial shaping, pre-amplifier technology, and the optical parametric chirped pulse amplification pump source.
amplifier injection laser pulse shaping spatial shaping synchronization. 
High Power Laser Science and Engineering
2018, 6(2): 02000e34
作者单位
摘要
1 上海大学特种光纤与光接入网重点实验室, 上海 200072
2 中国科学院上海光学精密机械研究所, 上海 201800
提出应用于激光脉冲高精度时间同步测量的技术方案。利用时间数字转换技术, 精确测量激光脉冲相对延时, 测量精度可小于10 ps(峰谷值)。为满足测量电路对脉冲宽度的要求, 设计针对短脉冲激光的电脉冲展宽模块, 可以将百皮秒量级的电脉冲展宽至纳秒量级, 引入时间抖动的均方根值小于2 ps。该测量方案实现了实时高精度时间同步测量, 可以作为时间同步反馈补偿的实时监测使用。
激光器 高功率激光驱动器 光参量啁啾脉冲放大 时间同步 同步测量 
激光与光电子学进展
2017, 54(8): 081401
Author Affiliations
Abstract
1 National Laboratory on High Power Lasers and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800, China
2 University of the Chinese Academy of Sciences, Beijing 100049, China
A double-clad Yb-doped mode-locked fiber laser that can operate in burst-mode and square-pulse states is experimentally investigated. In the burst-mode state, a burst train with 55 pulses of 500 ps duration is obtained. In the square-pulse state, which is similar to noiselike pulses, the maximum pulse energy is 820 nJ and the duration can be tuned from 15.8 to 546 ns. The square pulses have a narrow and multipeak spectrum, which is quite different from that of normal noiselike pulses. The fiber laser promises an alternative formation mechanism for burst-mode and square-pulse mode-locked fiber lasers.
Collection Of theses on high power laser and plasma physics
2016, 14(1): 052701
Author Affiliations
Abstract
1 National Laboratory on High Power Lasers and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800, China
2 University of the Chinese Academy of Sciences, Beijing 100049, China
FM-to-AM modulation is an important effect in the front end of high-power lasers that influences the temporal profile. Various methods have been implemented in standard-fiber and polarization-maintaining (PM)-fiber front ends to suppress the FM-to-AM modulation. To analyze the modulation in the front end, a theoretical model is established and detailed simulations carried out that show that the polarizing (PZ) fiber, whose fast axis has a large loss, can successfully suppress the modulation. Moreover, the stability of the FM-to-AM modulation can be improved, which is important for the front end to obtain a stable output. To verify the model, a PZ fiber front end is constructed experimentally. The FM-to-AM modulation, without any compensation, is less than 4%, whereas that of the PM fiber front end with the same structure is nearly 20%. The stability of the FM-to-AM modulation depth is analyzed experimentally and the peak-to-peak and standard deviation (SD) are 2% and 0.38%, respectively, over 3 h. The experimental results agree with the simulation results and both prove that the PZ fiber front end can successfully suppress the FM-to-AM conversion. The PZ fiber front end is a promising alternative for improving the performance of the front end in high-power laser facilities.
Lasers frequency modulated Phase modulation Wave propagation Fusion 
Collection Of theses on high power laser and plasma physics
2016, 14(1): 8352
Yurong Li 1,2,3Xiaochao Wang 1,2Youen Jiang 1,2Zhi Qiao 1,2,3[ ... ]Wei Fan 1,2
Author Affiliations
Abstract
1 National Laboratory on High Power Laser and Physics, Shanghai 201800, China
2 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and fine Mechanics, Chinese Academy of Science, Shanghai 201800, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
A fiber-based,high precision long-term stable time synchronization system for multi-channel laser pulses is presented,using fiber pulse stacker combined with high-speed optical-electrical conversion and electronics processing technology. This scheme is used to synchronize two individual lasers including a mode-lock laser and a time shaping pulse laser system. The relative timing jitter between two laser pulses achieved with this system is 970 fs (rms) in five minutes and 3.5 ps (rms) in five hours. The synchronization system is low cost and can work at over several tens of MHz repetition rate.
ICF OPCPA time synchronization long-term stable 
Collection Of theses on high power laser and plasma physics
2016, 14(1): 10019

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!